Operation and Service Manual

MODEL DP-V1

TURBINE ENGINE MAIN FUEL CONTROL

MODEL AL-AD1

POWER TURBINE GOVERNOR

- Operation
- Installation
- Adjustment
- Service

OPERATION AND SERVICE MANUAL

MODEL DP-V1

TURBINE ENGINE MAIN FUEL CONTROL

MODEL AL-AD1 POWER TURBINE GOVERNOR

THE BENDIX CORPORATION ENERGY CONTROLS DIVISION

717 N. BENDIX DRIVE
SOUTH BEND, INDIANA 46620

TABLE OF CONTENTS

Section
FOREWORD 2
I INTRODUCTION 3
II DESCRIPTION AND PRINCIPLES 5
OF OPERATION
2-1. General5
2-7. Model DP-V1 Turbine 6
Engine Main Fuel Control
8
2-11. Fuel Section
9
9
2-12. Scheduling Section 10
2-14. Model AL-AD1 Power Turbine 10
Governor
2-16. Regulator Section 12
2-17. Governing Section 13
2-18. Overspeed Section 14
-21. Operation of the Complete 15
Fuel Control System
15
2-22. Starting the Engine 15
2-23. Acceleration
16
2-24. Load Application
16
16
2-25. Deceleration 17
-27. Altitude Compensatio 17
ADJ USTMENTS 18
3-1. General 18
3-3. Start Derichment Adjustment 18
3-4. Idle Speed Adjustment 18
3-5. Maximum Gas Producer Speed 18
3-6. Acceleration Adjustment 21
3-7. Power Turbine Speed (N2) 23
AdjustmentTROUBLESHOOTING CHART25
V PRODUCT SUPPORT 40

SECTION I

INTRODUCTION

FOREWORD

This publication is intended as an operational guide for use by personnel responsible for the installation, adjustment, operation, and maintenance of the described equipment.

Specific reference to engine operation
is made only as it will aid in
understanding control operation.
Always refer to the engine
manufacturer's specifications,
instructions and operating procedures.

1-1. This publication contains operational instructions and a description of the Bendix Fuel Control System as used on the Allison 250-C30 series engines. The assemblies which comprise the system are shown in figure 1-1. The purpose of this publication is to explain the function and operation of the individual units and to correlate this information with the operation of the complete system.

1-2. The individual units comprising this ystem are manufactured and calibrated with extreme care. In order to derive maximum performance and trouble-free service from this equipment, the components must be installed and adjusted in accordance with the engine manufacturer's instructions.

SECTION II

MODEL DP-VI TURBINE ENGINE MAIN FUEL CONTROL
$\mathrm{J}-4030$

Fuel Control System Components
Figure 1-1

DESCRIPTION AND PRINCIPLES OF OPERATION

2-1. GENERAL.
2-2. The Bendix fuel control system consists of:
a. Model DP-V1 Turbine Engine Main Fuel Control.
b. Model AL-AD1 Power Turbine Governor.

2-3. A general understanding of the engine and its operation in a helicopter installation is advantageous when considering the operation of the fuel system. The 250-C30 series engine is a free turbine engine, meaning that there is no mechanical coupling between the two turbine assemblies. The turbines are: first, a gas producer turbine that drives the compressor; and second, a power turbine that drives the helicopter rotor through the appropriate reduction gearing. The hot gas discharged by the gas producer turbine is directed to, and in turn drives, the power turbine. This arrangment provides a "gas coupling" between the turbines and therefore necessitates control of the output or speed of both turbines.

2-4. These helicopters employ a conventional control system whereby collective pitch of the rotor establishes power output or load on the engine. For all practical purposes, rotor speed is held constant. Therefore, engine power turbine speed must be held constant. A collective pitch is changed, the load on the power turbine changes, tending to change its speed. The gas producer turbine must then correct for this tendency by changing its own speed accordingly to supply the power required to maintain a constant power turbine speed. turbine governor provide speed governing of the power turbine rotor and overspeed protection for the gas producer rotor system. The fuel control system is pneumatic-mechanical and senses N1 and N2 speeds, compressor discharge air pressure (Pc), and twist grip position to regulate and maintain fuel flow within established limits.

2-6. Fuel flow is a function of Pc as sensed in the gas turbine fuel control. Variations in fuel flow schedules are obtained by modulating the Pc pressure to $P x$ and Py pressures in the gas turbine fuel control through the bleed-down circuit actuated by the governors sensing $N 1$ RPM and RPM. The design of the fuel control system is based upon controlling. the engine power output by controlling N1 RPM. With the twist grip in ground idle, N1 RPM is controlled by the gas turbine fuel control. With the twist grip in full open and N2 RPM at the setting of the power turbine governor, N1 is established by power turbine governor action upon the gas turbine fuel control.

2-7. MODEL DP-VI TURBINE ENGINE MAIN FUEL CONTROL. (See figure 2-1)

2-8.
The Model DP-V1 Turbine Engine Main Fuel Control is the basic component of the engine fuel controlling system. This unit is a pneumatic-mechanical device which schedules the fuel flow delivered to the engine to provide proper engine operation during all starting and load operating conditions.

2-9.
The fuel control is mounted on the fuel pump and is driven at a speed proportional to gas producer turbine speed (N1). Additional sensing parameters required by the fuel control to properly schedule fuel flow are:
a. Throttle Angle
b. Fuel Inlet Pressure (P1).
c. Compressor Discharge Pressure (Pc).
d. Regulated Air Pressure (Pr)
(supplied by Power Turbine Governor).
e. Governor Reset Air Pressure (Pg) (supplied by Power Turbine Governor).

2-10. The Model DP-V1 Turbine Engine Main Fuel Control is primarily composed of three functional groups: 1) Fuel Section, 2) Scheduling Section, and 3) Governor Reset Section. The functions of these groups are discussed in the following paragraphs.

2-11. FUEL SECTION.

a. The Fuel Section is separated from the balance of the control by a casting wall and a torsion shaft fuel seal. The fuel section is designed to withstand fuel contamination with minimum adverse effect on control operation.
b. The fuel control is supplied with fuel at pump pressure (P1). Fuel flow is controlled by a metering valve and bypass valve system. Fuel at P1 pressure is applied to both valves.
c. The metering valve is a contoured needle which moves axially in its sleeve to provide a variable orifice. The valve is positioned by the Scheduling Section through a torsion shaft and lever. The fuel pressure after the metering valve is referred to as Metered Fuel Pressure (P2).
d. The bypass valve is a sliding valve working in a ported sleeve. The valve is actuated by a diaphragm and spring. Sensing both P1 and P2 fuel pressures, the bypass valve maintains an essentially constant fuel pressure differential (P1-P2) across the metering valve orifice. P1 fuel supplied by the fuel pump in excess of these requirements, is returned to pump inlet through an external line. This returned fuel is referred to as $P O$.
e. A relief valve is provided to prevent excessive P1 pressure buildup within the fuel control. The relief valve is positioned in parallel with the bypass valve and permits excess fuel to be returned to the pump through PO circuit.
f. A cutoff valve is incorporated in the fuel outlet of the control. The cutoff valve is mechanically connected to the throttle lever by external linkage to provide a positive means of stopping fuel flow to the engine. During normal operation, this valve is fully open and offers no restriction to the flow of fuel to the nozzles.

2-12. SCHEDULING SECTION.
a. Scheduling is accomplished by moving a bellows (governor bellows) which is mechanically connected to the metering valve through the torsion shaft. Movement of the governor bellows is performed pneumatically using pressures originating from compressor discharge. Throttle angle, engine speed (N1), and air density (supplied by compressor discharge pressure) signals are used to provide the proper fuel schedule for the engine.
b. Pc applied to the fuel control is divided, through fixed bleeds, into two individual controlling circuits (Px and Py). These circuit pressures are applied to opposite sides of the governor bellows. The Px-Py pressure differential is compared to an evacuated bellows (providing an absolute pressure reference) and the predetermined spring force of the torsion shaft to provide the bellows moving force.
c. The $P x$ and Py pressure circuits are terminated at variable-orifice restrictors. The restrictor orifices are controlled by sensed engine speed (through speed weights) and opposing spring force. The enrichment spring (Px circuit) applies a fixed force and permits fuel enrichment at a predetermined engine speed. The governor spring (Py circuit) force
a. The governor reset section permits the Power Turbine Governor to override the speed governing elements of the fuel control to alter the fuel schedule in response to changing load conditions applied to the power turbine.
b. A Pr-Pg valve is incorporated which prevents $N 1$ engine speed undershoot during gas producer decelerations when the N1 throttle is moved to the ground idle position. This is occomplished by opening the throttle actuated $\mathrm{Pr}-\mathrm{Pg}$ valve, which equalizes Pr and Pg pressures eliminating the reset action supplied from the power turbine governor.

2-14. MODEL AL-ADI POWER TURBINE GOVERNOR. (See figure 2-2.)

2-15. The Bendix Model AL-AD1 Power Turbine Governor supplements the Model DP-V1 Tubine Engine Main Fuel Control to provide a complete engine fuel controlling system. The function of the Model AL-AD1 Power Turbine Governor is to maintain the speed of the power turbine (N2) by resetting the Model DP-V1 Turbine Engine Main Fuel Control. This "resetting" establishes the gas producer speed (N1) required to supply N2.
a. The power turbine governor is mounted on the accessory gear case and is driven at a speed proportional to power turbine speed (N2). Additional sensing parameters required by the Model AL-AD1 Power Turbine Governor to accomplish its governing function are:
(1) Throttle Angle.
(2) Compressor Discharge Pressure.

b. The Model AL-AD1 Power Turbine Governor is primarily composed of three functional groups:
(1) Regulator Section.
(2) Governing Section.
(3) Overspeed Section.

2-16. REGULATOR SECTION.
a. An air pressure regulator system is built into the cover of the power turbine governor to provide an air pressure source that is at a fixed pressure above ambient. The regulator consists of a spring-loaded, diaphragm-operated valve. Compressor discharge pressure (PC) is applied to the system through the Pc machine hole. The resultant pressure is then applied to the air regulator valve diaphragm and is opposed by ambient air pressure Pa and spring force. Regulation of Pr (regulated air pressure) is accomplished by bleedoff to ambient pressure through the regulator valve. If Pr attempts to increase above the desired value, the regulator valve is opened farther and more Pr is bled off to Pa. A Pr decrease will cause the regulator valve to move in a closing direction thus restricting bleedoff. Regulator Pr is then applied to the Pr-Pg bleed and to one side of the governor reset diaphragm in the Model DP-V1 Turbine Engine Main Fuel Control.
b. After passing through $\mathrm{Pr}-\mathrm{Pg}$ bleed the air is designated as Pg and is applied to the Pg restrictor in the power turbine governor drive body. Pg then is applied to the other side of the governor reset diaphragm in the Model DP-V1 Turbine Engine Main Fuel Control. Prior to opening the Pg restrictor, the Pg circuit is static and Pg is equal to Pr . As the Pg restrictor opens and air flows through the Pg circuit, a pressure drop will occur across the $\mathrm{Pr}-\mathrm{Pg}$ bleed.
c. The power turbine governor incorporates a vent port which vents the inner body cavity to atmospheric pressure Pa.

2-17. GOVERNING SECTION.

a. The governing section of the power turbine governor employs an orifice restrictor (Pg) to modify the pressure in the Model DP-V1 Turbine Engine Main Fuel Control when the power turbine speed varies from desired value. This reduces or increases the fuel flow delivered to the engine, by action of the governor reset rod, to maintain the power turbine speed selected.
b. This unit is a compound governor and also incorporates an overspeed restrictor (Py). The cover has a Py port which is connected to the Py port of the Model DP-V1 Turbine Engine Main Fuel Control. An overspeed lever is used which will move away from the restrictor (Py) and provide a bleedoff of Py from the DP-V1 control if the power turbine speed (N2) reaches 113 percent. This reduction of Py pressure in the DP-V1 control will decrease the fuel flow so that the power provided to the power turbine will be substantially reduced.
c. The throttle lever operates a cam which depresses an internal lever when the throttle is opened. A spring connects this cam follower lever to the governor lever. The governor lever is pivoted and operates against a restrictor to form a variable orifice (Pg). The overspeed lever pivots at the same point as the governor lever and operates against a restrictor to form a variable orifice (Py). A ball bearing follower on the end of the governor lever assembly contacts the end of the bearing assembly.
d. As the control drive shaft
revolves, it rotates a table on which the governor weights are mounted. Small levers on the inside surface of the weights contact the bushing assembly. As power turbine speed increases, centrifugal force causes the weights to apply increasing force against the bushing assembly. This tends to move the bushing assembly outward on the shaft causing the
bushing assembly to exert force on the governor lever assembly. When power turbine speed reaches its desired value, governor weight force overcomes opposing spring force and the Pg restrictor is opened. This allows Pg to bleedoff to Pa .
e. Any change in power turbine speed (from the desired value) will result in a larger or smaller orifice opening in the Pg restrictor. The power turbine governor, therefore, provides power turbine speed governing in the fuel controlling system.

2-18. OVERSPEED SECTION.
2-19. The overspeed section consists of a lever, spring and a Py-Pa orifice. When the power turbine speed is less than the overspeed setting, the lever is positioned so that the Py-Pa orifice is closed. If the power turbine RPM exceeds $114 \% \mathrm{~N} 2$, the governor flyweights move the governor lever against the governor spring to pick up the overspeed lever and move it against its spring to open the Py-Pa bleed. This bleeds Py air to Pa which allows the Py-Px differential acting on the governor bellows to start moving the metering valve to reduce fuel flow. This then will reduce the power turbine RPM to prevent the overspeed. Th overspeed lever remains closed unless a power turbine overspeed occurs.
$2-20$. The electronic power turbine overspeed control system is a backup for the overspeed protection system in the power turbine governor. It provides overspeed protection for the power turbine in the event of a malfunction of either the governor or the gear train that provides the governor speed sense. The electronic system consists of a gearbox-mounted, monopole speed sensing device that produces an electrical signal that is directly related to power turbine shaft speed, a control box, and a solenoid-operated Py vent valve. The vent valve reduces Py pressure to cause the gas turbine fuel flow to go to minimum in the event of a power turbine overspeed. The solenoid Py
vent valve is energized by a signal from the control box when N2 RPM exceeds $122 \pm 1.2 \%$ minus 1% for each $10 \% / \mathrm{sec}$. rate of change of N2.

2-21. OPERATION OF THE COMPLETE FUEL CONTROL SYSTEM.

2-22. STARTING THE ENGINE.

a. The engine will be cranked with the DP-V1 fuel control throttle in the cutoff position. At approximately 12 to 14 percent $N 1$, the twist grip handle on the pilot's collective pitch lever will be moved to "start" (idle), which will move the DP-V1 fuel control throttle lever to the 40 degree position. The engine should light off and begin to accelerate. Acceleration will be proportional to the rise in compressor discharge pressure (Pc) until speed enrichment occurs at approximately 47 percent N1. When N1 reaches approximately 63 percent RPM, the DP-V1 fuel control will start to govern and maintain idle RPM.
b. The DP-V1 fuel control has a start derichment assembly which incorporates a bellows for sensing Pc pressure. During the initial stages of starting, when Pc is low, the bellows will expose a hole from the Py portion of the bellows chamber. The exposed hole will bleedoff Py pressure from the bellows assembly to atmospheric pressure and move the metering valve toward the minimum flow stop. As PC pressure increases the derichment bellows will elongate and close the bleedoff hole. This will allow the Py pressure at the head end of the bellows assembly to build up as it did in the earlier controls and move the metering valve away from the minimum flow stop. With the start derichment device, low turbine outlet temperatures can be maintained immediately after light off while the basic acceleration schedule can be richened so there will be no tendency toward stagnation before idle RPM is attained.

2-23. ACCELERATION.
a. For acceleration above idle, the twist grip on the pilot's collective pitch control will be moved to its maximum position. This will cause the throttle lever on the DP-V1 fuel control to go from 40 to 100 degrees. Speed enrichment will be completed at approximately 73 percent $N 1$, after which the acceleration rate will again be proportional to the rise in compressor discharge pressure.
b. As far as the DP-V1 fuel control is concerned, acceleration would continue until 105 percent N1 has been reached. The AL-AD1 governor will terminate acceleration by resetting the DP-V1 fuel control to provide only enough N1 to maintain an N2.

2-24. LOAD APPLICATION.

a. Application of load requires increasing the pitch of the helicopter rotor blades. A load application will tend to cause a decrease in N2. The AL-AD1 governor will sense this decrease in N 2 and remove reset force from the DP-V1 fuel control and cause N1 to increase. As load is increased by movement of the collective control, the AL-AD1 throttle lever is advanced to compensate for the "droop" characteristic of the system.
b. If the load is decreased, N2 will tend to overspeed and the AL-AD1 governor will again reset the DP-V1 fuel control to lower N 1 .
c. Various power turbine speeds (N2) may be selected by repositioning the throttle lever on the $A L-A D 1$ governor through manipulation of a "beeper" switch.

2-25. DECELERATION.

a. Deceleration occurs when the pitch of the helicopter rotor blades is decreased. Removing the load on the power turbine will result in an N2 increase, and governor reset action will reduce $N 1$.
b. For further deceleration it will be necessary to bring the DP-V1 fuel control throttle lever back to the idle ("start") position. This will rotate the governor cam to a lower rise position, and less spring force will be exerted by the governor spring in the DP-V1 control. N1 will decelerate to approximately 63 percent with an accompanying decrease in N2.

2-26. STOPPING THE ENGINE. The engine is shut down by moving the throttle lever on the DP-V1 fuel control to the cutoff position by action of the twist grip handle on the pilot's collective pitch lever.

2-27. ALTITUDE COMPENSATION. Altitude compensation is automatic with this fuel control system since fuel metering is on a fuel
flow/compressor discharge pressure basis. The acceleration bellows is evacuated and affords an absolute pressure reference. Compressor discharge pressure is a measure of engine speed and air density. $P x$ and $P y$ are proportional to compressor discharge pressure so they will decrease with a decrease in air density. This is sensed by the bellows which acts to reduce fuel flow.

SECTION III
ADJUSTMENTS

3-1. GENERAL.
3-2. The fuel control system components are calibrated to exacting requirements at the time of manufacture. Many of the adjustments made at that time can only be made on special test equipment and are not designed to be made in the field. The following adjustments and procedures can normally be made in the field.

CAUTION

The following adjustments and procedures are the only ones normally required with the fuel control and governor installed on the engine. Locations of other adjustments in the illustrations are included for reference only.

3-3. START DERICHMENT ADJUSTMENT. An adjustment is provided on the start derichment device to increase or decrease the flow during the start range. Refer to figure 3-1. Loosen locknut so that the clamp and pointer can be turned. A clockwise adjustment will increase the flow while the counterclockwise adjustment will decrease the flow in the starting range. After an adjustment has been made, the locknut should be tightened to $20-25$ pound-inches and resafety wired.

3-4. IDLE SPEED ADJUSTMENT. Idle speed is set on the DP-V1 fuel control. Turn adjusting screw clockwise to increase N1 and counterclockwise to decrease N1 as viewed from the head of the screw; $1 / 8$ turn will change RPM approximately five percent N 1 .

3-5.
MAXIMUM GAS PRODUCER SPEED (N1) ADJUSTMENT. This adjustment on the DP-V1

LA-6118

Figure 3-1. Start Derichment Valve Assembly Adjustment and Acceleration Adjuster
fuel control is made to provide a maximum of 104 percent N1. One turn clockwise of adjusting screw (10, figure 3-2) will increase N1 approximately one percent.

NOTE

Midgrip Heli-Coil inserts are employed to prevent speed adjustment screws from turning. No locknuts are used.

3-6. ACCELERATION ADJUSTMENT. On late model controls, an adjustment is provided on

1. Tank return port
2. Pc pressure port
3. Fuel outlet port
4. Minimum flow stop
5. Metering valve sleeve (orifice) adjustment

J-4126

6. Fuel inlet port
7. Minimum throttle stop
8. Cutoff override lever adjustment
9. Maximum flow stop 10. Maximum throttle stop

Figure 3-2. Model DP-V1 Turbine Engine Main Fuel Control - External View (View 1)
the start derichment housing to increase or decrease the flow during acceleration. Refer to figure 3-1. Where this adjustment is provided, it is only necessary to turn the adjustment clockwise to increase and counterclockwise

11. Idle adjusting screw
12. Derichment valve clamp and pointer
13. Pc pressure port
14. Py pressure port

Figure 3-2. Model DP-V1 Turbine Engine Main Fuel Control - External View (View 2)
to decrease the fuel flow. Each click of the adjustment changes the fuel flow approximately one pound per hour. Only one click of the adjustment should be used at a time to preclude the possibility of hot starts or compressor stalling.

3-7. POWER TURBINE SPEED (N2) ADJUSTMENT. The output shaft maximum speed adjustment in

some cases can be made on the AL-AD1 governor. Turn adjusting screw (6, figure 3-3) counterclockwise to increase or clockwise to decrease maximum output shaft speed as viewed from the head of the screw.

SECTION IV

 TROUBLESHOOTING CHARTI tem

Engine fails to reach 15 percent cranking speed.

Engine f.ails to light off.

Probable Cause
 Remedy

Inadequate torque at starter pad

Air in the gas producer fuel control and lines.

Preservation
oil fouling
the spark
igniter.
Faulty circuit to ignition unit.
\square

Faulty ignition exciter.

Check output of starter and battery. Try using an APU.

Purge air from system at fuel nozzle and try a second start.

Try a second start

Listen for ignition operation Observe for fuel vapor coming out of the exhaust. Check input power to ignition unit. Isolate and replace defective part.

Listen for igniter operation. Observe for fuel vapor coming out of exhaust. Replace with known satisfactory unit.

Item	Trouble	Probable Cause	Remedy
$\stackrel{2}{\text { Cont. }}$	Engine fails to light off. Cont.	Faulty spark	Listen for
		ignition.	igniter
			operation. Observe for
			fuel vapor
			coming out
			of exhaust.
			Replace with
			known satisfactory unit.
		Insufficient	Fill tanks
		fuel in tanks.	with correct
			fuel.
			Check linkage.
		fuel control	
		remains in	
		Insufficient	Turn on air-
		fuel pressure	craft boost
		to fuel pump.	pump.
		Spark igniter	Check input
		firing inter-	voltage to
		mittently.	exciter.
			Check ignition
			exciter by replacing
			temporarily with
			a known satis-
			factory unit.
		Fuel nozzle valve stuck.	Replace fuel nozzle.
		Fuel-pump in-	Check pump for
		operative.	sheared drives
		(Fuel vapor	or internal dam-
		will not be	age; check for
		observed	air leaks at inle
		leaving the	or fluid leaks at
		exhaust.)	outlet.

Item Trouble Probable Cause Remedy

2 Engine fails Water or other
Cont. to light off. contaminant in Cont. fuel.

Check a sample of fuel from the bottom of the tank as follows:

Obtain an unchipped spotlessly clean, white enamel bucket (approximately ten quarts).

Drain about
four to five
inches of fuel
into the bucket from the sump to be tested. Test for solids then test for water.

With a clean mixing paddle, stir the fuel
into a swirling
"tornado-shaped"
cone. Remove
the paddle.
the swirling
stops, the solid contaminants will gather at the center of the bucket bottom. Cont
Probable Cause

Water or other contaminant in fuel. Cont.

Fuel nozzle
orifice
clogged.
Improper pneumatic signal to gas producer fuel control.

Remedy
Add several drops of household red food dye. The dye will mix with water and the solids in the bottom of the bucket. It will not mix with fuel. If no water is present, the dye will settle to the bottom of the bucket.

If contaminated, disconnect the fuel
line prior to the fuel pump, drain all fuel, clean filters and strainers, flush system with clean fuel,
recheck filters
and strainers,
flush system again purging all air from the system.

Replace nozzle.

Check air lines and fittings for looseness.
off but will not accelerate to idle speed at a normal rate.

Item Trouble
3 Engine lights Cont. off but will not accelerate to idle speed at a normal rate.

Probable Cause
Insufficient fuel supply to gas producer fuel control.

Insuffcient

 fuel pressure to fuel pump.Gas producer fuel control bypass valve stuck open.

Fuel nozzle partially clogged with carbon.

Fuel nozzle check valve stuck partially open.

Gas producer fuel control
incorrectly
adjusted or calibration has shifted.

Remedy
Check fuel system to ensure all valves are open and pumps are operative.

Turn on aircaft boost pump.

Place

throttle in
cutoff. Re-
move fuel
inlet line
and fuel by-
pass line.
Blow through
the fuel con-
trol inlet.
A slight re-
duction should
be felt. If
there is no
restriction, tap
the top of by-
pass valve
until a restric-
tion is felt.
Reconnect lines.
Clean fuel nozzle.

Replace fuel nozzle.

Comply with the Engine Maintenance Manual.

Item	Trouble	Probable Cause	Remedy
3 Cont.	Engine lights off but will not accelerate to idle speed at a normal rate. Cont.	Anti-icing	Close anti-
		valve open	icing valve
		and cabin	and turn
		heat on.	off cabin
			heat.
		Faulty power	Cap off Py
		turbine	line at
		governor.	fuel con-
			trol to
			isolate.
		Gas producer	Adjust start
		fuel control	derichment
		start de-	pointer in a
		richment too	clockwise
		lean.	direction.
4	Acceleration temperature too high during start.	Insufficient	Purge the
		time allowed	engine by
		for draining	motoring with
		after an un-	the gas pro-
		successful	ducer lever
		starting	and ignition
		attempt.	switch in OFF
			for approximately ten
			seconds before
			attempting a
			second start.
		Reduced bat-	Recharge or
		tery capacity.	replace battery.
		This can pro-	
		duce low	
		cranking speed.	
		High residual	Motor engine
		TOT in excess	with starter
		of 150 degrees	leaving gas
		C.	producer lever
			and ignition
			OFF.

Item Trouble

4 Acceleration
Cont. temperature too high during start. Cont.

Probable Cause
Depreciated starter which is not capable of dry motoring gas producer (N1) above 15 percent.

Gas producer	Review
lever (twist	starting
grip) in	procedure.
ground idle	
(start) posi-	
tion prior to	
and during	
starter engage-	
ment.	
Dirty compres-	Clean compres-
sor.	sor and bleed
	valve.
Fuel nozzle	Replace fuel
valve stuck	nozzle.
full open.	
Excessive com-	Check for leaks.
pressor air	Be sure that
leaking.	anti-ice valve
	is fully closed.

Bleed control valve stuck closed.

Gas producer fuel control incorrectly adjusted or calibration has shifted.

Gas producer fuel control start derichment too rich.

Remedy

Replace starter.

Clean compres valve.

Replace fuel nozzle.

Check for leaks.
sure that is fully closed.

Replace bleed control valve.

Comply with the Engine Maintenance Manual.

Adjust start derichment pointer in a counterclockwise direction.

Item	Trouble	Probable Cause	Remedy
5	Acceleration temperature too low during starting.	Fuel control system air sensing lines leaking.	Check air lines and fittings for leaks.
		Gas producer fuel control incorrectly adjusted or calibration has shifted.	Comply with the Engine Maintenance Manual.
		Gas producer fuel control start derichment too lean.	Adjust start derichment pointer in a clockwise direction.
6	Engine speed cycles at idle.	Gas producer fuel control bypass valve not operating freely.	Disconnect the fuel bypass line at the fuel pump, flush system with clean fuel. Inspect and clean the fuel filter. Tap bypass valve cover while flushing system. If the same condition still exists, remove control.
7	Engine instability above idle speed.	Contamination in the pneumatic section of the gas producer fuel control and power turbine governor.	Check Pg port in the governor and the Pc port in both control and governor. Clean bleeds and orifices as required.
8	Idle speed too low.	Incorrect gas producer lever setting.	Check lever position and rigging.

I tem	Trouble	Probable Cause	Remedy
$\stackrel{8}{\text { Cont. }}$	Idle speed too low.	Malfunctioning tachometer	Replace tachometer.
		Excessive generator load.	Reduce electrical load requirement.
		Dirty compressor.	Clean compressor and bleed valve.
		Gas producer fuel control idle adjustment incorrectly set.	Correct the setting. Adjust CW to increase N1 speed $1 / 8$ turn equals approximately five percent.
		Air sensing lines leaking.	Check for leaks. Tighten coupling nuts as required.
		Accumulator leaking.	Check for cracks in sheet metal or braze. Replace accumulator if leaks are found.
9	Idle speed too high.	Incorrect gas producer lever setting.	Check lever position and rigging.
		Malfunctioning tachometer.	Replace tachometer.
		Gas producer fuel control idle adjustment incorrectly set.	Correct the setting. Adjust CCW to decrease N1 speed - $1 / 8$ turn equals approximately five percent.
10	Low power with high TOT.	Compressor foreign object damage.	Replace compressor if damage exceeds limits.

10 Low power
Cont. with high TOT.
Cont.

Dirty compressor.

Bleed control valve has failed to close.

Excessive air leaks.

Faulty TOT Replace indicaindicator.

Anti-icing
valve leaking.

NOTE

The effect of anti-icing air flow on engine performance is as follows:

Approximate Effect on
Performance Available
at Power Levels Above

40,000 N1 Speed
A 33.1 HP decrease accompanied by only a slight decrease in N1 speed.

Type of Operation

Constant TOT,
694 degrees C
(1282 degrees
F) at sea
level, 4.44
level, 4.44
degrees $C(40$
degrees C (40
degrees F day),
cruise power.
Constant HP A 10 degrees C (50 degrees
(650) and con-
stant collec-
tive pitch
(load) opera-
tion.

Item	Trouble	Probable Cause	Remedy
10	Low power	Heat control	Cap off
Cont.	with high	valve leaking.	engine
	TOT.		bleed mani-
	Cont.		fold to
			isolate
			trouble.
		Faulty tor-	Replace
		quemeter in-	gage or
		dicating	transmitter.
		system.	
11	Low power with TOT below maximum limit.	Gas producer	
		control lever	age to the
		does not reach	gas producer
		maximum speed	fuel control.
		adjustment	
		stop.	
		Gas producer	Correct the
		control lever	maximum speed
		maximum speed	adjustment
		adjustment	setting. Adjust
		stop not pro-	CW to increase
		perly set.	N1 speed - one
			turn equals
			approximately
			one percent.
		Gas producer	Reset maximum
		control fuel	fuel flow.
		flow is set	
		too low.	
		Loose pneumati	Pressurize the
		fitting,	system to check
		cracked accumu-	for leaks.
		lator or	
		cracked pneu-	
		matic line	
		causing air	
		leak in con-	
		trol system.	
12	Low measured	Faulty TOT indi-	Replace indicator
	TOT at normal	cator.	

Item	Trouble	Probable Cause	Remedy
$\begin{gathered} 12 \\ \text { Cont. } \end{gathered}$	Low measured	Faulty TOT	Replace
	TOT at normal	thermocouple	thermocouple
	or high power. Cont.	assembly.	assembly.
13	Engine N1 or N2 overspeeds.	Gas producer	Check linkage
		fuel control	for proper
		linkage not	operation and
		properly set.	
		Defective gas	Isolate the
		producer fuel	governor from
		control or	the system by
		power turbine	removing Pc
		fuel governor.	fitting from
			governor and
			capping off
		Faulty N1 or N2 tachometer.	Replace generator or indica-
		NOTE	
	During ground run after overspeed incident, note the idle speed with the twist grip at 30 degrees position. If idle speed is normal, suspect the governor - if idle speed is high, suspect the gas producer fuel control as the faulty component.		
14	Excessive exhaust torching during transients.	Fuel nozzle	Replace fuel nozzle.
		Excessively	Contamination
		rich gas pro-	in pneumatic
		ducer fuel control.	the bypass valve.
			Clean bleeds and
			orifices.
		Leaking acces-	Repair or replace
		sory bleed	lines.
		lines.	

I tem	Trouble	Probable Cause	Remedy
15	Slow to accelerate from idle to power.	Dirty compressor.	Clean compressor and bleed valve.
		Hung Pr-Pg valve.	Check valve action by monitoring good cam to valve action, if condition persists, continue to next step.
		Loose pneumatic fittings.	Tighten or replace as required.
		Excessive generator load.	Reduce electrical load.
		Excessive compressor air leakage.	Check for leaks and repair.
		Gas producer control acceleration schedule too lean.	Comply with the Engine Maintenance Manual.
16	Slow to accelerate to power while in flight.	Same as preceding trouble.	Correct as in preceding trouble.
		```Governor link- age incorrectly rigged.```	Check rigging. Correct linkage as required.
17	TOT approximately 30 degrees C (1.87 degrees F) lower than normal at	Bleed control valve stuck closed.	Replace bleed control valve.

Compressor surge during starting or near the idle speed.

19 Compressor surge during starting.

Compressor surge during acceleration.

Compressor surge during low power operation.

Dirty compressor.

Excessively
rich gas producer fuel
control.
Bleed control valve stuck closed.

Bleed control valve stuck closed.

Excessively rich gas producer fuel control.

Bleed control valve has failed to open.

Excessively rich gas producer fuel control.

Compressor erosion.

Bleed control valve has failed to open.

## Remedy

Clean compressor and bleed valve.

Contamination in pneumatic circuit. Clean circuit

Replace bleed control valve.

Replace bleed control valve.

Contamination in pneumatic circuit. Clean circuit.

Replace bleed control valve.

Contamination in pneumatic circuit. Clean circuit.

Inspect compressor.
Correct as required.
Replace bleed control valve.

Item	Trouble	Probable Cause	Remedy
22	Unable to stop engine.	Gas producer fuel cutoff valve not closed.	Close the aircraft fuel shutoff valve to stop the engine.   Then check control linkage rigging or replace gas produce fuel control if faulty.
23	Afterfire	Burner drain valve line obstruction.	Check the drain lines. Clean or replace as necessary.
		Sticking burner drain valve.	Replace valve.
		Fuel nozzle valve stuck open.	Replace fuel nozzle.
		Gas producer fuel control cutoff valve not fully closed.	Check linkage or replace fuel control.
24	N2 slow to respond.	Improper governor setting.	Contamination in pneumatic circuit. Clean circuit.
25	N2 tends to overshoot.	Improper governor setting.	Contamination in pneumatic circuit. Clean circuit.

## SECTION V <br> PRODUCT SUPPORT

5-1. Bendix Energy Controls Division maintains a network of Authorized Warranty and Certificated Repair Stations worldwide in addiCertificated Repair Stations worldwide in addi
tion to Field Service Engineers strategically located both domestically and overseas. These repair stations provide the following services:
a. Warranty repair.
b. Exchange fuel controls and governors.
c. Complete overhaul and repair capability.
d. Trained Field Service Representatives.
e. Training.

